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We discuss pulse propagation effects in generic, electrically and magnetically dispersive media that may
display large material discontinuities, such as a surface boundary. Using the known basic constitutive relations
between the fields, and an explicit Taylor expansion to describe the dielectric susceptibility and magnetic
permeability, we derive expressions for energy density and energy dissipation rates, and equations of motion
for the coupled electric and magnetic fields. We then solve the equations of motion in the presence of a single
interface, and find that in addition to the now-established negative refraction process an energy exchange
occurs between the electric and magnetic fields as the pulse traverses the boundary.
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I. INTRODUCTION

During the past few years, the study of magnetically ac-
tive, negative index materials �NIMs� �1–3� has led many
researchers to reevaluate and characterize a number of many
well-known electromagnetic propagation phenomena as they
occur in NIMs. For example, many workers have reported on
different aspects of the dynamics involving NIMs that range
from causality �4� and superluminal propagation �5�, to two-
dimensional propagation that includes material dispersion
�6�. Other subjects tackled include wave-front distortions of
steady state transverse Gaussian beams �7�, modification of
quantum mechanical spontaneous and stimulated emission
rates �8�, multilayer NIM stacks �9�, nonlinear interactions
�10�, and propagation in guiding layers surrounded by NIM
�11�. More recently, gap solitons �12� and optical diode-like
�13� behavior have also been predicted.

The dynamics of short pulses �i.e., at least two-
dimensional wave packets having finite spatial and temporal
width, not infinitely long sources or wires that carry sinu-
soidal currents� undergoing negative refraction has previ-
ously been reported in the linear regime using the matrix
transfer method �14,15�. However, many issues relating to
the dynamics of pulse propagation still remain unresolved.
For example, the issue of energy, energy flow, and energy
redistribution within a NIM is an open question, just as it is
for ordinary positive index materials �16,17�. A modified en-
ergy density had already been derived for dispersive � and �,
but under conditions of relative transparency �negligible ab-
sorption� and the quasimonochromatic regime �16,18�:

U�z,t� =
1

8�
�Re� ��������

��
��E�2 + Re� ��������

��
��H�2	 .

�1�

Under conditions of normal dispersion, away from reso-
nances, Eq. �1� insures that energy remains positive �16�, but
it is believed to fail whenever absorption is an important
component of the dynamics �19�, as in plasmas �20�, or met-

als, for example. A simple inspection of Eq. �1� reveals that it
also fails under conditions of anomalous dispersion, i.e., in
proximity of resonances and large absorption. Although Eq.
�1� appears to have limited validity �5,21�, we will show that
it can still be used for pulses only a few wave cycles in
duration, under conditions of normal dispersion, when ab-
sorption is present, and if one limits the total propagation
distance to just a few pulse widths, or distances smaller than
typical bulk dispersion lengths. Restricting one’s consider-
ations to relatively small propagation distances that do not
exceed a few pulse widths is usually more than sufficient in
NIMS, for example, since the length of typical NIM struc-
tures realized to date is less than incident pulse spatial width
�2–4�. These conditions are also easily satisfied if the pulse is
incident on layered structures of finite extent, whose total
thickness may be just a few wavelengths, and where geo-
metrical dispersion �the presence of boundaries� tends to
dominate over material dispersion, especially when index
discontinuities are large �22�. These circumstances can be
handily achieved in bulk materials that are well-described by
the Drude model below the plasma frequency, metals for
example. The Drude model is in fact widely used to describe
and model NIMs. It is easy to verify that both the real and
imaginary parts of the dielectric constant of silver �or other
similar good conductor such as gold, copper or aluminum�
�23� are approximately linear functions of frequency pro-
vided the range of interest is limited to just a few hundred
nanometers at a time. This generally means that pulses just a
few wave cycles in duration can easily satisfy our conditions
at almost any carrier frequency, provided we do not allow the
pulse to propagate too deep into the material. We will clarify
and expand on the significance of this point in the next sec-
tion, where we present the propagation model and give ex-
amples.

Because Eq. �1� is known to fail at least under certain
conditions, we will attempt to derive a new generalized en-
ergy density that will replace it, and a new energy dissipation
rate that will complement it. Then, we will derive equations
of motion that describe the dynamics of pulses under condi-
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tions of dispersive and discontinuous � and �, and we will
see a novel effect emerge: as the pulse crosses the interface
energy can be transferred from the electric to the magnetic
field, or vice versa, depending on the chosen set of param-
eters. This effect cannot occur in ordinary materials ��=1�.
However, if the magnetic permeability is also discontinuous,
but not necessarily negative, the energy content of the pulse
is transformed.

II. ENERGY DENSITY AND ENERGY
DISSIPATION RATES

Beginning from a dispersion relation, one usually needs to
produce the time derivatives �D�r , t� /�t and �B�r , t� /�t from
constitutive relations in order to write Maxwell’s equations
and proceed further. The alternative approach is to directly
couple the material equations of motion for the polarization
and magnetization to Maxwell’s equations in the time do-
main �5,6,21�. In our view it is more instructive to proceed
with constitutive relations for several related reasons: First,
this approach leads to equations of motion that can be inter-
preted much more easily compared to other methods. Sec-
ond, the resulting equations can effortlessly be extended to
include an electric or magnetic nonlinearity, or both. Third,
the method provides useful physical insight �24� into the
dynamics unavailable with other methodologies, where for
example the field equations are coupled with oscillator equa-
tions to yield a fully numerical approach �5�. Therefore, as-
suming the displacement vector D is linearly polarized along
the x axis, we write it in complex notation in the usual man-
ner: D= i(Dx�r , t�+c.c.). We now assume that the dispersion
function can be written as a generic Taylor expansion/series
as usual:

��r,�� = ��r,�0� + 
 ���r,��
��



�0

�� − �0�

+
1

2

 �2��r,��

��2 

�0

�� − �0�2 + ¯

= a�r,�0� + b�r,�0�� + c�r,�0��2 + ¯ . �2�

For simplicity one may assume that �0 is the carrier fre-
quency of the incident pulse. All coefficients are assumed to
be complex, and their spatial dependence is meant to de-
scribe the presence of spatial inhomogeneities, such as physi-
cal boundaries, for example, although other types of
anisotropies such as birefringence could also be taken into
account. Then, the constitutive relation that ties the displace-
ment vector to the electric field E�r , t�= i�Ex�r , t�+c.c.� takes
the form

Dx�r,t� = �
−�

�

��r,��Ex�r,��e−i�td�

= �
−�

�

�a�r,�0� + b�r,�0�� + c�r,�0��2 + ¯ 

��Ex�r,���e−i�td� . �3�

The integrations can be carried out exactly, and so we have

Dx�r,t� = a�r,�0�Ex�r,t� + ib�r,�0�
�Ex�r,t�

�t

− c�r,�0�
�2Ex�r,t�

�t2 + ¯ . �4�

Equivalent derivations �16,18� typically assume pulse enve-
lopes to be slowly varying functions of time. Although Eq.
�4� is an exact result that does not rely on slowly varying
envelopes, it is nevertheless convenient and useful to sepa-
rate the fields into an envelope function and a carrier fre-
quency, making no assumptions about the field envelope.
The decomposition can thus be regarded as a simple func-
tional transformation. Then, assuming an electric field of the
form Ex�r , t�=Ex�r , t�e−i�0t, it follows that

Dx�r,t� = aExe
−i�0t + ib� �Ex

�t
− i�0Ex�e−i�0t

− c� �2Ex

�t2 − 2i�0

�Ex

�t
− �0

2Ex�e−i�0t + ¯ . �5�

We have simplified the notation by dropping the explicit spa-
tial and temporal dependence of all Taylor coefficients and E.
The calculation of �Dx�r , t� /�t is straight forward, and the
result is

�Dx�r,t�
�t

= �− i�0���0�Ex + � ��������
��

	
�0

�Ex

�t

+
i

2
� �2�������

��2 	
�0

�2Ex

�t2 + ¯ �e−i�0t, �6�

which in turn can be expressed in a more compact form as
�24�

�Dx�r,t�
�t

= − �
n=0

� �
in+1�n����
��n 


�=�0

1

n!

�2Ex

�tn �e−i�0t. �7�

Following the same procedure outlined between Eqs. �2�–�7�,
we can easily arrive at a similar expression for the magnetic
field:

�By�r,t�
�t

= − �
n=0

� �
in+1�n����
��n 


�=�0

1

n!

�2Hy

�tn �e−i�0t. �8�

At this point the derivation of Eq. �1� is typically carried out
�16,18� by retaining only the first two leading terms in each
of our Eqs. �7� and �8�, and by neglecting absorption �both �
and � are assumed to be real�. The consequences of these
choices lead to the restrictions that are implemented in
�16,18�, for example: �i� pulse bandwidth must be limited,
i.e., pulses are quasimonochromatic, and/or �ii� both the di-
electric susceptibility and the magnetic permeability do not
display absorption, and �iii� are approximately linear func-
tions of frequency; �iv� if broad bandwidth pulses are con-
sidered, then propagation distances should remain short, on
the order of just a few pulse widths, so that higher order
dispersive effects can still be neglected even if the dispersion
functions display curvature within the bandwidth of the inci-
dent pulse. Instead, use of Eqs. �7� and �8� allows us to
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immediately generalize Eq. �1� to the case where dispersion
and absorption are present to an arbitrary degree. Substitu-
tion of Eqs. �7� and �8� into Poynting’s theorem �16–18�,
namely �U /�t+Qdissipated=E · ��D�r , t� /�t�+H · ��B�r , t� /�t�
=−� ·S, results in the following expression:

�U

�t
= �r�Ex

�Ex
*

�t
+ Ex

*�Ex

�t
� +

i�r�

2
�Ex

*�2Ex

�t2 − Ex

�2Ex
*

�t2 �
+

�r�

6
�Ex

�3Ex
*

�t3 + Ex
*�3Ex

�t3 � + �r�Hy

�Hy
*

�t
+ Hy

*�Hy

�t
�

+
i�r�

2
�Hy

*�2Hy

�t2 − Hy

�2Hy
*

�t2 �
+

�r�

6
�Hy

�3Hy
*

�t3 + Hy
*�3Hy

�t3 � + ¯ . �9�

Integration by parts and retention of just a few leading terms
leads to the following modified, instantaneous energy den-
sity:

U�z,t� = �r�Ex�2 + 	r�Hy�2 +
i�r�

2
�Ex

*�Ex

�t
− Ex

�Ex
*

�t
�

+
i	r�

2
�Hy

*�Hy

�t
− Hy

�Hy
*

�t
�

+
�r�

6
�Ex

�2Ex
*

�t2 + Ex
*�2Ex

�t2 −
�Ex

�t

�Ex
*

�t
�

+
�r�

6
�Hy

�2Hy
*

�t2 + Hy
*�2Hy

�t2 −
�Hy

�t

�Hy
*

�t
� + ¯

�10�

and to a corresponding expression for energy dissipation
rate:

− Qdissipated�z,t�

= 2�0��i�Ex�2 + �i�Hy�2 + i�i�Ex
*�Ex

�t
− Ex

�Ex
*

�t
�

+ i	i�Hy
*�Hy

�t
− Hy

�Hy
*

�t
� −

�i�

2
�Ex

*�2Ex

�t2 + Ex

�2Ex
*

�t2 �
−

	i�

2
�Hy

*�2Hy

�t2 + Hy

�2Hy
*

�t2 � + ¯ , �11�

where �=�r+ i�i=�������� /��, 	=	r+ i	i=�������� /��,
and the prime symbol indicates differentiation with respect to
the frequency. The leading terms in both Eqs. �10� and �11�
can be identified as the energy density—Eq. �1�—and the
corresponding energy absorption rate, respectively, for quasi-
monochromatic pulses �16,18�.

Equations �10� and �11� have general validity and are in-
dependent of any propagation model because the only as-
sumptions that have been made in deriving them are that �i�
a Taylor expansion can be used to describe both � and �; �ii�
the real parts of � and �, and their derivatives, can be asso-
ciated with energy flow, and that the corresponding imagi-

nary parts can be interpreted as energy dissipation rates in
the usual way �16,18�. One should be mindful of the fact that
the RHS of both Eqs. �10� and �11� may converge slowly,
especially near resonances where dispersion is anomalous,
large absorption is present, and functions may vary rapidly.
Therefore, an unspecified number of terms beyond those
shown may have to be included, depending on the slopes of
� and � and on pulse duration. If we now write the field
envelope as the product of an amplitude and a phase factor,
both as functions of space and time, i.e., E�r , t�= �E�ei
E and
similarly for H, and retaining just the first two electric and
magnetic leading terms, Eqs. �10� and �11� can be recast in a
different but equally suggestive form:

U�z,t� � ��r − ��r
̇E��Ex�2 + �	r − 	�r
̇H��Hy�2 + ¯

�12�

and

− Qdissipated�z,t� � 2��i�0 − ��i
̇E��Ex�2 + 2��i�0 − ��i
̇H�

��Hy�2 + ¯ . �13�

These equations illustrate that in general the evolution and
signs of the phases of the fields are just as important as the
slopes of � and �, even if 
E and 
H are relatively slowly
varying functions of time.

III. EQUATIONS OF MOTION AND PROPAGATION
MODEL

We are now interested in deriving a set of equations that
describes the dynamics of a pulse crossing an interface be-
tween two arbitrary media, where at least one of them is
magnetically active, in order to accurately describe the scat-
tering event. As we do this we will see a different effect take
shape: energy can flow from the electric field to the magnetic
field, or vice versa. To facilitate our task we make a simple,
practical but not too restrictive assumption: we limit the total
propagation distance inside the magnetically active material
to just a few pulse widths, regardless of pulse duration. This
allows us to truncate the Taylor expansion in Eq. �2� at the
second term, in effect rendering Eqs. �12� and �13� nearly
exact for almost any pulse that has crossed but is still located
relatively near the surface. Of course, relatively long pulses
whose duration is several tens of wave cycles in duration can
propagate further without incurring significant error.

The treatment of all orders of dispersion for bulk propa-
gation becomes necessary should propagation distances be-
come large, and can always be done in other ways, for ex-
ample by deriving a Schrödinger equation for the case of
magnetically active materials �24�. Alternatively, if higher
orders of dispersion are a real concern, one may preempt
them by tuning the carrier frequency of very short pulses �on
the order of the wave period� at frequencies where the group
velocity dispersion coefficient crosses the axis �25�, thus di-
minishing the importance of higher order temporal deriva-
tives. In other words, these arguments amount to saying that
higher order dispersion terms may generally be neglected
because the corresponding dispersion lengths may be at least
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several tens of pulse widths, and thus do not affect the dy-
namics we are studying. Consequently, we properly and cor-
rectly monitor the pulse group and energy velocities at all
times even when we treat short pulses. The neglect of curva-
ture effects, and group velocity dispersion along with it, may
become a concern should pulse duration become too short,
and/or if propagation distances inside a uniform medium be-
come considerable �several tens of pulse widths�.

With these considerations in mind, we assume a pulse is
initially located in vacuum, some distance away from an in-
terface that separates two generic materials. The electric field
is linearly polarized, points into the page, and is incident at
an arbitrary angle �i, as shown in Fig. 1. We expand the
fields as follows:

E = i�Ex�y,z,t�ei�kzz−kyy−�t� + c.c.� ,

H = j�Hy�y,z,t�ei�kzz−kyy−�t� + c.c.�

+ k�Hz�y,z,t�ei�kzz−kyy−�t� + c.c.� , �14�

where kz= �k�cos �i and ky =−�k�sin �i, �k�=k0=� /c. This
choice of carrier wave vector is consistent with the fact that
the pulse is initially located in vacuum, but one can easily
introduce another background index. We make no other as-
sumptions about the envelope functions, and the fields’
phases are allowed to evolve free of preconditions, as func-
tions of position and time. We substitute Eqs. �7�, �8�, and
�14� into the vector Maxwell equations:

� � E = −
1

c

�B

�t
,

� � H =
1

c

�D

�t
. �15�

Retaining only the first two leading terms on the RHS of
Eqs. �7� and �8� to reflect our assumption of approximately
linear � and �, and rearranging terms, we obtain a set of
three coupled equations for the field envelopes �26�:

���̃�����
��̃

�Ex

�
= i	�����Ex − Hz sin �i − Hy cos �i�

+
�Hz

�ỹ
−

�Hy

��
,

���̃�����
��̃

�Hy

�
= i	�����Hy − Ex cos �i� −

�Ex

��
,

���̃�����
��̃

�Hz

�
= i	�����Hz − Ex sin �i� +

�Ex

�ỹ
. �16�

The following scaling has been adopted: �=z /�p, x̃=x /�p;
=ct /�p, 	=2��̃, and �̃=� /�p, where �p is conveniently
chosen to be the wavelength associated with the plasma fre-
quency. Writing the propagation equations as they appear in
Eqs. �16� provides insight that is normally absent when one
pursues a fully numerical approach. For instance, the form of
the equations immediately suggests a positive group velocity
for propagation in uniform, relatively transparent media,
based on the fact that energy should be positive �16�: 1 /Vg

��(���̃����� /��̃)(���̃����� /��̃). One may show this by
eliminating the H field and by writing the wave equation for
the electric field, for instance �24�. For the interested reader,
there is an extended discussion of wave packet dynamics,
including chirp, spatial pulse compression, and the study of
conjugate space in Ref. �26�, were Eqs. �16� are also derived
and solved the same way. In summary, to arrive at Eqs. �16�
we have assumed that � and � are complex and approxi-
mately linear in the region of interest. The equations are then
solved in the time domain using a modified fast Fourier
transform pulse propagation method designed to handle arbi-
trary spatial discontinuities �27�. The method of integration
is unconditionally stable �28�, converges rapidly, and its
implementation involves simple multiplication of linear op-
erators �27�.

IV. PROPAGATION INTO A NIM

We now illustrate the dynamics with a representative ex-
ample. At normal incidence, assuming infinite Fresnel num-
ber �transverse profile of the pulse is wide enough so that it
does not diffract over the propagation distances involved�,
Eqs. �16� reduce to a set of two coupled equations, namely
�26�

FIG. 1. �Color online� A pulse is initially located on the left side
of an interface which separates two generic media. The electric field
is polarized into the page. At oblique incidence this setup yields two
magnetic field components, one transverse and one longitudinal
with respect to the direction of propagation. The model can easily
be adjusted to include incident TM polarized pulses, and can also
easily be extended to a full 3D model.
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���̃�����
��̃

�Ex

�
= i	�����Ex − Hy� −

�Hy

��
,

���̃�����
��̃

�Hy

�
= i	�����Hy − Ex� −

�Ex

��
. �17�

Although the parameters we use are consistent with a
Drude model described by ���̃�=1−1/ ��̃2+ i�̃��, and
���̃�=1− ��m

2 /�p
2� / ��̃2+ i�̃��, the qualitative and quantita-

tive results are valid for a general class of dispersion models.
We choose an incident pulse with carrier frequency tuned at
�̃=0.7, approximately 80 wave cycles in duration, and both
� and � are negative. We note that causality here demands
only that ��0, and so in our first example we choose
�=5�10−5, which results in a complex index of refraction
�at the carrier frequency� n=−0.564+ i1.25�10−4, and a
relatively small but measurable absorption.

In Fig. 2 we show Re��� �thick solid line� and Re���
�thick dashed line� for �m

2 /�p
2 =0.64. In the same figure we

also show the bandwidth of the incident pulse �thin solid
line�. It is evident that both � and � are approximately linear
functions of frequency in the range of interest, and so the
propagation of this pulse is described very well by Eqs. �16�
and �17� for quite some distance inside the material. In fact,
the second and third order dispersion lengths can be esti-
mated using the simple relationships LD

�2��p
2 / �k�� and

LD
�3��p

3 / �k��, where p is the initial pulse duration, and k�
and k� are second and third order dispersion coefficients. For
the pulse and the dispersion functions of Fig. 2, at �̃=0.7
and p�80�p; �k���0.1; �k���2.5, the respective dispersion
lengths are LD

�2��6.4�104�p and LD
�3��2�105�p �24,25�,

respectively.
In Fig. 3 we show the input and output electric and mag-

netic field intensities corresponding to Fig. 2. Should the
condition �=� be satisfied, regardless of their magnitudes,
then E=H everywhere away from the interface inside and
outside the material. However, here the relative amplitudes

of H and E differ inside the material because ���, and
reflected and transmitted amplitudes develop according to
the boundary conditions.

We now come to the evaluation of Eqs. �10� and �11�, or
in the case of approximately linear dispersion �or equiva-
lently, relatively short propagation distances�, Eqs. �12� and
�13�. In Fig. 4 we plot the total energy, defined as
WT��=�−�

� U�� ,�d�, as the sum of the electric and magnetic
energies, also shown individually, as functions of time. We
find that energy actually flows from the electric to the mag-

FIG. 2. Re��� �solid�, Re��� �dashed� versus normalized fre-
quency, and spectrum of an 80-wave cycle incident pulse, which we
define as follows: E�� ,0�=E0e−��2/802�.

FIG. 3. Electric and magnetic field pulses that are incident, re-
flected, and transmitted from an interface that separates vacuum
from a NIM. The incident pulse is that described in Fig. 2, with
its carrier frequency tuned at �̃=0.7. The values of � and
� are obtained using �=5�10−5 in the Drude dispersion:
�=−0.104+ i1.458�10−4 and �=−0.306+ i9.33�10−4, with corre-
sponding values ����̃����� /��̃��̃=0.7=3.04− i2.9�10−4 and
����̃����� /��̃��̃=0.7=2.3− i1.86�10−4. The integrations converge
rapidly, and so it is sufficient to set ��=�=0.025.

FIG. 4. Total, electric, and magnetic energies that result from
the scattering of the pulses depicted in Fig. 3. The figure clearly
shows that energy flows from the electric field to the magnetic field,
an event that cannot occur for ordinary materials.
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netic field as the pulse traverses the interface. In addition,
one can arrange the parameters in such a way that energy
flows from the magnetic to the electric field. Although we do
not show this, this in fact occurs when we choose
�m

2 /�p
2 =1.44, and tune the carrier frequency to �̃=0.892

�n=−0.456+ i9.11�10−5�: the relative magnitudes of � and
� are inverted, yielding a process similar to what occurs in
Fig. 4, only reversed in terms of E and H. To our knowledge,
this kind of energy exchange and its implications have not
been investigated to any significant degree, probably because
magnetic discontinuities were almost never an issue. In fact,
for this process to occur we find that it is sufficient to have
both � and � different and discontinuous, but not necessarily
negative. For example, we obtain a figure once again similar
to Fig. 4 by setting �m

2 /�p
2 =1.44 and �̃=1.3, which tunes the

fields in a region of positive index: n=0.246+ i3.4�10−5.
When a pulse crosses an ordinary dielectric interface

�n�1 and �=1 everywhere� electric energy becomes tem-
porarily stored in the medium, causing the amplitude of the
electric field to decrease. At the same time, the pulse slows
down and becomes spatially compressed by a factor roughly
proportional to the group index. The magnetic field, on the
other hand, cannot give up its energy directly to the medium
due to the absence of magnetic dipoles, and so the spatial
compression is usually accompanied by an increase of its
maximum amplitude. Therefore, to the extent that absorption
may be ignored, electric and magnetic energies must be in-
dividually conserved.

Once we allow for the presence of magnetic dipoles, the
global requirement that energy be conserved �i.e., the sum of
the two terms in Eq. �1�� does not necessarily extend to the
individual electric and magnetic fields. As a result, while the
boundary conditions establish the individual peak field am-
plitudes inside the medium, and the group index determines
the pulse spatial compression factor �26�, there is nothing to
constrain electric dipoles from temporarily giving up energy
so that more energy is stored in magnetic form. �In the case
of pulses the boundary condition, which is of course defined
and intended to apply to pure plane waves, should be inter-
preted as the peak value of a pulse that approaches quasimo-
nochromatic status�. The ability to shift energy from the elec-
tric to the magnetic field or vice versa may be important to
highlight magnetic effects, and for nonlinear applications
�12,13�, where one field or the other may be favored �29�,
and thus thresholds lowered, if one field or the other can be
used as a reservoir.

Returning to Fig. 4, it is evident that the total energy
residing in the fields decreases as the pulse penetrates further
into the medium and is transformed into heat. We now high-
light qualitative and quantitative differences between Eq. �1�
and Eq. �12� as a function of decreasing pulse duration, in
the presence of considerable absorption, but by keeping dis-
persion approximately linear and/or by keeping propagation
distance down to just a few pulse widths. This allows us to
clearly focus on the pulse as it crosses the interface. In Fig. 5
we use the same parameters used in Fig. 4, except that now
�=10−3 and n=−0.5645+ i2.51�10−3, and plot the energy as
given by Eqs. �1� and �12�, for an incident pulse only 5 wave
cycles in duration. The second and third order dispersion
lengths are LD

�2��p
2 / �k���250�p and LD

�3��p
3 / �k���50�p,

respectively �24,25�. An analysis of the data and the figure
suggests that Eqs. �1� and �12� yield energies with a differ-
ence smaller than 0.2%. We record approximately the same
difference for Q, the energy absorption rate corresponding to
Eq. �1�.

The results outlined above clearly suggest that if disper-
sion remained approximately linear, but arbitrarily large �ne-
glecting curvature in the dispersion functions does not mean
one is neglecting dispersion. Indeed, the slope of the disper-
sion functions may be quite steep even in the absence of
curvature; this is all that the model requires� then the error
incurred in using Eq. �1� rather than Eq. �12� appears to be
approximately 0.2%, even for pulses that are only a few
wave cycles in duration. In reality we expect that the linear
dispersion model will begin to fail for pulses that are longer
than the 5 wave cycles that we used, as pulse bandwidth
begins to spill over into regions where curvature cannot be
neglected, even for short propagation distances.

A more precise assessment of the error incurred can be
made through an independent verification of Poynting’s theo-
rem, which amounts to a statement of conservation of en-
ergy: it is required that the rate of change of energy flow
within a certain region of space must equal the rate at which
energy is being absorbed within that same volume, namely

�
−�

�

d�
�U��,�

�
=

�WT��
�

= − �
−�

�

d� Q��,� . �18�

The circulation of the Poynting vector vanishes when the
integral is evaluated over all space. We have assumed that
any shape changes along the transverse coordinates can be
ignored, but for energy considerations the integrations along
x and y in Eq. �18� are of course implied. We therefore pro-
ceed as follows: we first calculate the total energy WT�� and

FIG. 5. Calculation of the total energy via Eq. �1� �solid line�
and the new Eq. �11� for a pulse only 5 wave cycles in duration,
E�� ,0�=E0e−��2/52� under conditions of approximately linear disper-
sion. There is a small discrepancy of approximately 0.2% between
the two curves, an indication that indeed Eq. �1� can accurately
describe what happens to the energy of the pulse as it crosses an
interface.
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its derivative, and then compare the result with the direct
integration of Eq. �13�, namely −�−�

� d�Qdissipated�� ,�. The
results of this procedure are depicted in Fig. 6, where we plot
typical �WT�� /� �solid� and −�−�

� d�Qdissipated�� ,� �dashed�
curves. The figure reveals that the discrepancy is approxi-
mately 1.4% for pulses 5 wave cycles in duration, and about
0.5% for 15-wave cycle pulses �not shown�. Therefore, we
conclude that for all practical purposes, the approximately
linear dispersion model is more than adequate to study the
dynamics of almost any pulse that transits across an inter-
face. To take the pulse further into the medium, one can
always add dispersive terms to Eqs. �16� and �17�, or inte-
grate the equations of motion including all orders of disper-
sion using any of a number of techniques �5,24,28�. How-
ever, the energy exchange process that we have described
above occurs as the pulse crosses the surface, and the model
exemplified by Eqs. �16� is more than adequate for that pur-
pose.

Finally in Fig. 7 we show the typical result of integrating
Eqs. �16� for an obliquely incident Gaussian pulse approxi-
mately 20 wave cycles in duration, located in vacuum, that
crosses into a NIM for the parameters of Fig. 5. The figure
shows a series of snapshots that mark the pulse location in
space as the interaction proceeds. Each arrow clearly indi-
cates the direction of the incident, transmitted, and reflected
wave packets. We note that the transmitted pulse refracts
negatively and is quickly being absorbed.

V. CONCLUSIONS

We integrate equations of motion that describe the dy-
namics of electromagnetic pulses transiting into magnetic
materials �see also Ref. 26�, and used them to show that a
new effect occurs as the pulse traverses the surface bound-
ary: energy can be transferred from the electric to the mag-
netic field or vice versa. This dynamics is fully consistent
with the global requirement that the total energy should be
conserved. We have also derived new generalized expres-
sions for energy density and energy dissipation rates assum-
ing the dispersion functions can be represented as a Taylor
expansion, which includes all analytic functions. We have
also verified that, under conditions of normal dispersion, the
energy density commonly used to describe the energy den-
sity of quasi-monochromatic pulses in the absence of absorp-
tion can still be used for pulses that are just a few wave
cycles in duration, when absorption is arbitrarily �but caus-
ally� large. We limit total propagation distance into the me-
dium to just a few pulses widths, which is quite adequate for
NIMs or for studying surface effects. The model is also par-
ticularly useful to describe pulse propagation effects in finite,
layered structures with large index discontinuities, as their
typical lengths are only a small fraction of the corresponding
spatial extent of the pulse �22�.
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